COURSE OUTLINE

(1) GENERAL

SCHOOL	HEALTH & CARE SCIENCES			
ACADEMIC UNIT	BIOMEDICAL SCIENCES			
DIVISION OPTICS AND OPTOMETRY				
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	4011-4012		SEMESTER	4 th
COURSE TITLE	OPTICAL AND OPTOMETRIC INSTRUMENTS			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY	
if credits are awarded for separate components of the course, e.g.			TEACHIN	CREDITS
lectures, laboratory exercises, etc. If the credits are awarded for the			GHOURS	
whole of the				
course, give the weekly teaching hours and the total credits				
LECTURES + LABORATORY EXERCISES			4Lec+2Lab	7
Add rows if necessary. The organisation of teaching and the				
teaching methods used are described in detail at (d)				
COURSE TYPE Special background				
aeneral		00110		
background, special				
background, specialised general				
knowledge, skills development				
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION and	GREEK			
EXAMINATIONS:				
IS THE COURSE OFFERED TO	NO			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course material aims at understanding the principles of operation of the basic optical instruments, for use in daily practice in his professional career.

Upon successful completion of the course the student three will be able to:

• To know the principles of operation of optical imaging instruments for the understanding of

technological and scientific research methods in their subject.

• Be familiar with the use of various optical instruments

General Competences Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?				
Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others			
 Working independently Team work 				

(3) SYLLABUS

- Light propagation, wavefronts, rays, vergence, diopters, third-order lens aberrations
- Photometry (luminous flux, luminance, illumination, Lambert surfaces)
- Optical characteristics of optical instruments (stops pupils chief and marginal rays numerical aperture f number angle of view, field of view).
- Image quality, optical resolution, spatial frequencies, modulation transfer function, point spread function
- Magnifier, oculars, Projection systems
- Microscopes, telescopes, binoculars, telemicroscopes, cameras photographic lenses.
- Focimeter, keratometer, corneal topographer, slit lamp, optometer, retinoscope, ophthalmoscope

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	In class			
Face-to-face, Distance				
learning, etc.				
USE OF INFORMATION	e-class			
ANDCOMMUNICATIONS				
TECHNOLOGY				
Use of ICT in teaching, laboratory education				
communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching	Lectures	52		
are described in detail.	Laboratory practice	26		
Lectures, seminars, laboratory	Study	102		
practice, fieldwork, study and analysis				
of bibliography, tutorials, placements,				
clinical practice, art workshop,				
interactive teaching, educational				
visits, project, essay writing, artistic				
creativity, etc.				
The student's study hours for each				
learning activity are given as well as	Course total	180		
the hours of non- directed study				
according to the principles of the FCTS				
STUDENT PERFORMANCE EVALUATION	Written final exam (50%)			
Description of the evaluation procedure	Laboratory work (50%)			
Language of evaluation, methods of				
evaluation, summative or conclusive,				
multiple choice questionnaires, short-				
answer questions, open- ended				
questions, problem solving, written				
work, essay/report, oral examination,				
public presentation, laboratory work,				
interpretation other				
interpretation, other				
Specifically-defined evaluation				
criteria are given, and if and where				
they are accessible to students.				

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

In Greek

- 1. Visual Optics, Drakopoulos Panos and George Asimellis, pp 440, Syghroni Gnosi 2014
- 2. Geometrical Optics, Asimellis George, Vamvakas Ioannis, Panos Drakopoulos, pp281, Syghroni Gnosi, 2012
- 3. Visual Optical Instruments, Drakopoulos Panos and George Asimellis, pp 256, Syghroni Gnosi, 2011
- 4. Basic principles of Chromatometry, V. Orphanakos, Stamoulis Ed., 2004
- 5. Applied Optics, D. Zevgolis, Tziola Publ., 3rd edition, 2017

English

- 1. Introduction to Geometrcal Optics, M Katz, World Scientific, 2002
- 2. Handbook of Optics, M. Bass editor, Volumes I,II, III, McGraw-Hill Inc, 3rd edition, 2010
- 3. Optical devices in Ophthalmology and Optometry, M. Kaschke, K. Donnerhacke, M.S. Rill, pp625,

Wiley-VCH, 2014

- 4. Optics, Blaker J.W., P. Schaeffer, an Introduction for Technicians and Technologists, Prentice-Hall, 2000
- 5. Optics, Hecht E., Addison Wesley, 4th Edition, 2001
- 6. The manual of photography, E. Allen and S. Triantaphillidou editors, 10th edition, Focal Press, 2011
- 7. Optometric Instrumentation, D.B. Henson, Butterworth-Heinemann, 2nd edition, 1996
- 8. Optics and Optical Instruments, Johnson B.K., Dover Publications, 1960
- 9. Handbook of Applied Photometry, DeCusatis Editor, 1998
- 10. The light measurement Handbook, Ryer A., International light, 1997
- 11. Seeing the light, Falk D., Brill D., Stork D., John Wiley and Sons, 1986.
- 12. Geometrical Optics and Optical Design, Mouroulis P. and J. Macdonald, Oxford University Press, 1997
- 13. The eye and visual optical instruments, Smith G. and Atchison D.A. Cambridge University Press, 1997.
- 14. Modern optical engineering, Smith W.J., SPIE Press, Mc Graw Hill, 2000